TSH80-82,84 Datasheet by STMicroelectronics

This is information on a product in full production.
July 2014 DocID009413 Rev 9 1/30
1
TSH80, TSH81, TSH82, TSH84
Wide-band rail-to-rail operational amplifiers with standby function
Datasheet - production data
Features
Operating range from 4.5 to 12 V
3 dB-bandwidth: 100 MHz
Slew rate 100 V/µs
Output current up to 55 mA
Input single supply voltage
Output rail-to-rail
Specified for 150 Ω loads
Low distortion, THD 0.1%
SOT23-5, SO8, and TSSOP packages
Automotive qualification
Applications
Video buffers
A/D converter drivers
Hi-fi applications
Description
The TSH8x series offers single, dual and quad
operational amplifiers featuring high video
performance with large bandwidth, low distortion
and excellent supply voltage rejection. These
amplifiers also feature large output voltage
swings and a high output current capability to
drive standard 150 Ω loads.
Running at single or dual supply voltages ranging
from 4.5 to 12 V, these amplifiers are tested at 5 V
(±2.5 V) and 10 V (±5 V) supplies.
The TSH81 device also features a standby mode,
which provides the operational amplifier with
a low power consumption and high output
impedance. This function allows power saving or
signal switching/multiplexing for high-speed and
video applications.
For board space and weight saving, the TSH8x
series is proposed in SOT23-5, SO8, TSSOP8,
and TSSOP14 plastic micropackages.
SO8
SOT23-5
TSSOP8 TSSOP14
www.st.com
Contents TSH80, TSH81, TSH82, TSH84
2/30 DocID009413 Rev 9
Contents
1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 22
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
E]
DocID009413 Rev 9 3/30
TSH80, TSH81, TSH82, TSH84 List of tables
List of tables
Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C
(unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Standby mode - VCC+, VCC-, Tamb = 25 °C (unless otherwise specified). . . . . . . . . . . . . . 12
Table 6. TSH81 standby control pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Video results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8. SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. SO8 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. TSSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. TSSOP14 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 12. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 13. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
List of figures TSH80, TSH81, TSH82, TSH84
4/30 DocID009413 Rev 9
List of figures
Figure 1. Pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Closed loop gain and phase vs. frequency (gain = +2, VCC = ±2.5 V) . . . . . . . . . . . . . . . . 13
Figure 3. Overshoot vs. output capacitance (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 4. Closed loop gain and phase vs. frequency (gain = -10, VCC = ±2.5 V) . . . . . . . . . . . . . . . 13
Figure 5. Closed loop gain and phase vs. frequency (gain = +11, VCC = ±2.5 V) . . . . . . . . . . . . . . . 13
Figure 6. Large signal measurement – positive slew rate (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Large signal measurement – negative slew rate (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Small signal measurement – rise time (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Small signal measurement – fall time (VCC = ±2.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Channel separation (crosstalk) vs. frequency schematic (VCC = ±2.5 V) . . . . . . . . . . . . . . 14
Figure 11. Channel separation (crosstalk) vs. frequency (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Equivalent input noise voltage (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Maximum output swing (VCC = ±2.5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 16. Group delay (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 14. Standby mode - Ton, Toff (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Third order intermodulation (VCC = ±2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Closed loop gain and phase vs. frequency (gain = +2, VCC = ±5 V) . . . . . . . . . . . . . . . . . 16
Figure 18. Overshoot vs. output capacitance (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 19. Closed loop gain and phase vs. frequency (gain = -10, VCC = ±5 V) . . . . . . . . . . . . . . . . . 16
Figure 20. Closed loop gain and phase vs. frequency (gain = +11, VCC = ±5 V) . . . . . . . . . . . . . . . . 16
Figure 21. Large signal measurement - positive slew rate (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 22. Large signal measurement - negative slew rate (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . 16
Figure 23. Small signal measurement - rise time (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 24. Small signal measurement - fall time (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 25. Channel separation (crosstalk) vs. frequency schematic (VCC = ±5 V) . . . . . . . . . . . . . . . 17
Figure 26. Channel separation (crosstalk) vs. frequency (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 27. Equivalent input noise voltage (VCC = ±5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 28. Maximum output swing (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 31. Group delay (VCC = ±5 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 29. Standby mode - Ton, Toff (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 30. Third order intermodulation (VCC = ±5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 32. CCIR330 video line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 33. Measurement on Rohde and Schwarz VSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 34. Asymmetrical supply schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Use of the TSH8x in a gain = -1 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 37. SO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 38. TSSOP8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 39. TSSOP14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Pm (onnedlon: TSHSO/SOTZLS ompm E El Nomnv mum E Z! v00. \nvemng mpm NeE ENC mama Na“. E j NCC. Nam mpm E El 0mm Veer E ENC Ne E Wang W. E Nam m. E E om Vcc' E snwnsv VCC. El Vcc‘ 3 0mm (mum E - \nvemngmpun E Numnv mum E <[e‘ \nvnmngwnmz="" vcc'="" e="" 3="" nam="" mpmz="" omnum="" e="" \nvemng="" mpm="" e="" v95="" .="" e="" nan="" mm="" ed="" ‘aaaaaaaaaaz="" e="" e="" omnum="" e="" mm="" mm="" e="" nun="" my="" wwm="" e="" veer="" e="" nan="" mu="" mums="" el="" mm="" mm="" 0mm="" e="" e="" calm="">
DocID009413 Rev 9 5/30
TSH80, TSH81, TSH82, TSH84 Package pin connections
1 Package pin connections
Figure 1. Pin connections for each package (top view)
Pin connections TSH81 SO8/TSSOP8
Pin connections TSH82 SO8/TSSOP8
Pin connections TSH80/SO8
Pin connections TSH84 TSSOP14
Pin connections TSH80/SOT23-5
vokage“)
Absolute maximum ratings and operating conditions TSH80, TSH81, TSH82, TSH84
6/30 DocID009413 Rev 9
2 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
VCC Supply voltage(1)
1. All voltage values, except differential voltage are with respect to the network ground terminal.
14
VVid Differential input voltage(2)
2. The differential voltage is the non inverting input terminal with respect to the inverting terminal.
±2
ViInput voltage(3)
3. The magnitude of input and output must never exceed VCC +0.3 V.
±6
Toper Operating free air temperature range -40 to +85
°CTstg Storage temperature -65 to +150
TjMaximum junction temperature 150
Rthjc
Thermal resistance junction-to-case(4)
SOT23-5
SO8
TSSOP8
TSSOP14
4. Short-circuits can cause excessive heating.
80
28
37
32
°C/W
Rthja
Thermal resistance junction-to-ambient area
SOT23-5
SO8
TSSOP8
TSSOP14
250
157
130
110
ESD
HBM: human body model(5)
MM: machine model(6)
CDM: charged device model(7)
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through
a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then
discharged directly to ground through only one pin. This is done for all pins.
2
0.2
1.5
kV
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 4.5 to 12
VVIC Common mode input voltage range VCC- to (VCC+ -1.1)
Standby (pin 8) Threshold on pin 8 for TSH81 (VCC-) to (VCC+)
E]
DocID009413 Rev 9 7/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
3 Electrical characteristics
Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C
(unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
|Vio| Input offset voltage Tamb = 25 °C
Tmin < Tamb < Tmax
1.1 10
12 mV
ΔVio/ΔTInput offset voltage drift vs.
temperature Tmin < Tamb < Tmax V/°C
Iio Input offset current Tamb = 25 °C
Tmin < Tamb < Tmax
0.1 3.5
5
µA
Iib Input bias current Tamb = 25 °C
Tmin < Tamb < Tmax
615
20
Cin Input capacitance 0.3 pF
ICC Supply current per operator Tamb = 25 °C
Tmin < Tamb < Tmax
8.2 10.5
11.5 mA
CMR Common mode rejection ratio
(ΔVic/ΔVio)
+0.1< Vic< 3.9 V and Vout = 2.5 V
Tamb = 25 °C
Tmin < Tamb < Tmax
72
70
97
dB
SVR Supply voltage rejection ratio
(ΔVCC/ΔVio)
Tamb = 25 °C
Tmin < Tamb < Tmax
68
65
75
PSR Power supply rejection ratio
(ΔVCC/ΔVout)Positive and negative rail 75
Avd Large signal voltage gain
RL = 150 Ω connected to 1.5 V and
Vout = 1 V to 4 V
Tamb = 25 °C
Tmin < Tamb < Tmax
75
70
84
Io
|Source|
Vid = +1, Vout connected to 1.5 V
Tamb = 25 °C
Tmin < Tamb < Tmax
35
28
55
mA
Sink
Vid = -1, Vout connected to 1.5 V
Tamb = 25 °C
Tmin < Tamb < Tmax
33
28
55
Electrical characteristics TSH80, TSH81, TSH82, TSH84
8/30 DocID009413 Rev 9
Voh High-level output voltage
Tamb = 25 °C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
RL = 150 Ω connected to 2.5 V
RL = 600 Ω connected to 2.5 V
RL = 2 kΩ connected to 2.5 V
RL = 10 kΩ connected to 2.5 V
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
RL = 150 Ω connected to 2.5 V
4.2
4.60(1)
4.5
4.1
4.4
4.36
4.85
4.90
4.93
4.66
4.90
4.92
4.93
V
Vol Low-level output voltage
Tamb = 25 °C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
RL = 150 Ω connected to 2.5 V
RL = 600 Ω connected to 2.5 V
RL = 2 kΩ connected to 2.5 V
RL = 10 kΩ connected to 2.5 V
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
RL = 150 Ω connected to 2.5 V
48
54
55
56
220
105
76
61
150
400
200
450
mV
GBP Gain bandwidth product
F = 10 MHz
AVCL= +11
AVCL= -10
65
55 MHz
Bw Bandwidth at -3 dB AVCL= +1
RL = 150 Ω connected to 2.5 V 87
SR Slew rate
AVCL = +2
RL = 150 Ω // CL to 2.5 V
CL = 5 pF
CL = 30 pF 60
104
105
V/ms
φm Phase margin RL = 150 Ω // 30 pF to 2.5 V 40 Degree
en Equivalent input noise
voltage F = 100 kHz 11 nV/
Hz
THD Total harmonic distortion
AVCL= +2, F = 4 MHz
RL = 150 Ω // 30 pF to 2.5 V
Vout = 1Vpp
Vout = 2Vpp
-61
-54
dB
IM2 Second order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω connected to 2.5 V
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 100 kHz
-76 dBc
Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
E]
DocID009413 Rev 9 9/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
IM3 Third order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω to 2.5 V
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 400 kHz
-68 dBc
ΔG Differential gain AVCL = +2, RL = 150 Ω to 2.5 V
F = 4.5 MHz, Vout = 2 Vpp
0.5 %
Df Differential phase AVCL = +2, RL = 150 Ω to 2.5 V
F = 4.5 MHz, Vout = 2 Vpp
0.5 Degree
Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2
dB
Vo1/Vo2 Channel separation F = 1 MHz to 10 MHz 65
1. Tested on the TSH80ILT device only.
Table 3. Electrical characteristics at VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 °C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
E]
Electrical characteristics TSH80, TSH81, TSH82, TSH84
10/30 DocID009413 Rev 9
Table 4. Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C
(unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
|Vio| Input offset voltage Tamb = 25 °C
Tmin < Tamb < Tmax
0.8 10
12 mV
ΔVio/ΔTInput offset voltage drift vs.
temperature Tmin < Tamb < Tmax V/°C
Iio Input offset current Tamb = 25 °C
Tmin < Tamb < Tmax
0.1 3.5
5
µA
Iib Input bias current Tamb = 25 °C
Tmin < Tamb < Tmax
615
20
Cin Input capacitance 0.7 pF
ICC Supply current per operator Tamb = 25 °C
Tmin < Tamb < Tmax
9.8 12.3
13.4 mA
CMR Common mode rejection ratio
(ΔVic/ΔVio)
-4.9 < Vic < 3.9 V and Vout = GND
Tamb = 25 °C
Tmin < Tamb < Tmax
81
72
106
dB
SVR Supply voltage rejection ratio
(ΔVCC/ΔVio)
Tamb = 25 °C
Tmin < Tamb < Tmax
71
65
77
PSR Power supply rejection ratio
(ΔVCC/ΔVout)Positive and negative rail 75
Avd Large signal voltage gain
RL = 150 Ω connected to GND and
Vout = -4 to +4
Tamb = 25 °C
Tmin < Tamb < Tmax
75
70
86
Io
|Source|
Vid = +1, Vout connected to 1.5 V
Tamb = 25 °C
Tmin < Tamb < Tmax
35
28
55
mA
Sink
Vid = -1, Vout connected to 1.5 V
Tamb = 25 °C
Tmin < Tamb < Tmax
30
28
55
Voh High-level output voltage
Tamb = 25 °C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
4.2
4.1
4.36
4.85
4.9
4.93
V
Vol Low-level output voltage
Tamb = 25 °C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
-4.63
-4.86
-4.9
-4.93
-4.4
-4.3
mV
E]
DocID009413 Rev 9 11/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
GBP Gain bandwidth product
F = 10 MHz
AVCL = +11
AVCL = -10
65
55 MHz
Bw Bandwidth at -3 dB AVCL = +1
RL = 150 Ω // 30 pF to GND 100
SR Slew rate
AVCL = +2
RL = 150 Ω // CL to GND
CL = 5 pF
CL = 30 pF 68
117
118
V/µs
fm Phase margin RL = 150 Ω connected to GND 40 Degree
en Equivalent input noise voltage F = 100 kHz 11 nV/
Hz
THD Total harmonic distortion
AVCL = +2, F = 4 MHz
RL = 150 Ω // 30 pF to GND
Vout = 1 Vpp
Vout = 2 Vpp
-61
-54
dB
IM2 Second order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω to GND
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 100 kHz
-76
dBc
IM3 Third order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω to GND
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 400 kHz
-68
ΔG Differential gain AVCL = +2, RL = 150 Ω to GND
F = 4.5 MHz, Vout = 2 Vpp
0.5 %
Df Differential phase AVCL = +2, RL = 150 Ω to GND
F = 4.5 MHz, Vout = 2 Vpp
0.5 Degree
Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2
dB
Vo1/Vo2 Channel separation F = 1 MHz to 10 MHz 65
Table 4. Electrical characteristics at VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 °C
(unless otherwise specified) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
cc Vcc'y Tam!)
Electrical characteristics TSH80, TSH81, TSH82, TSH84
12/30 DocID009413 Rev 9
Table 5. Standby mode - VCC+, VCC-, Tamb = 25 °C (unless otherwise specified)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Vlow Standby low level VCC-(VCC- +0.8)
V
Vhigh Standby high level (VCC- +2) (VCC+)
ICC-STBY
Current consumption per
operator when standby is active Pin 8 (TSH81) to VCC-20 55 µA
Zout Output impedance (Rout//Cout)Rout
Cout
10
17
MΩ
pF
Ton
Time from standby mode to
active mode 2
µs
Toff
Time from active mode to
standby mode Down to ICC-STBY = 10 µA 10
Table 6. TSH81 standby control pin status
TSH81 standby control pin 8 (STANDBY) Operator status
Vlow Standby
Vhigh Active
Figure 2. Closed loop gain and phase vs. 5). Figure 3. Overshoot vs. output capacitance cc ammo Figure 4. Closed loop gain and phase vs. Figure 5. Closed loop gain and phase vs. Figure 6. Large signal measurement — positive Figure 7. Large signal measurement — negative cc El
DocID009413 Rev 9 13/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
Figure 2. Closed loop gain and phase vs.
frequency (gain = +2, VCC = ±2.5 V)
Figure 3. Overshoot vs. output capacitance
(VCC = ±2.5 V)
Figure 4. Closed loop gain and phase vs.
frequency (gain = -10, VCC = ±2.5 V)
Figure 5. Closed loop gain and phase vs.
frequency (gain = +11, VCC = ±2.5 V)
Figure 6. Large signal measurement – positive
slew rate (VCC = ±2.5 V)
Figure 7. Large signal measurement – negative
slew rate (VCC = ±2.5 V)
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-1 5
-1 0
-5
0
5
10
Gain (dB)
-200
-100
0
100
200
Phase (°)
Gain
Phase
RL = 150 Ω, Tamb = 25 °C
1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-5
0
5
10
Gain (dB)
150Ω
150Ω//10pF
150Ω//33pF
150Ω//22pF
Gain = +2, Tamb = 25 °C
150
Ω
150 Ω // 10 pF
150 Ω // 33 pF
150 Ω // 22 pF
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-10
0
10
20
30
Gain (dB)
-100
-50
0
50
100
150
200
Phase (°)
Gain
Phase
RL = 150 Ω, Tamb = 25 °C
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-10
0
10
20
30
Gain (dB)
-150
-100
-50
0
Phase (°)
Gain
Phas e
Phase
Gain
RL = 150 Ω
, Tamb = 25 °C
Gain = +2, Z
L
= 150
Ω
//5.6 pF, V
in
= 400 mVpk
010203040506070
Time (ns)
-3
-2
-1
0
1
2
3
Vout (V)
Gain = +2, ZL = 150 Ω
//5.6 pF, Vin = 400 mVpk
Figure 8. Small signal measuremenl— rise time Figure 9. Small signal measurement—fall time Figure 10. Channel separation (crosstalk) vs. wows Figure 11. Channel separation (crosstalk) vs. Figure 12. Equivalent input noise vollage Figure 13. Maximum output swing
Electrical characteristics TSH80, TSH81, TSH82, TSH84
14/30 DocID009413 Rev 9
Figure 8. Small signal measurement – rise time
(VCC = ±2.5 V)
Figure 9. Small signal measurement – fall time
(VCC = ±2.5 V)
Figure 10. Channel separation (crosstalk) vs.
frequency schematic (VCC = ±2.5 V)
Figure 11. Channel separation (crosstalk) vs.
frequency (VCC = ±2.5 V)
Figure 12. Equivalent input noise voltage
(VCC = ±2.5 V)
Figure 13. Maximum output swing
(VCC = ±2.5 V)
0 102030405060
-0.06
-0.04
-0.02
0
0.02
0.0 4
0.0 6
Vin,V
out (V)
Vin
Vout
Time (ns)
Gain = +2, RL = 150 Ω, Vin = 400 mVpk
0102030405060
Time (ns)
-0.06
-0.04
-
0.0 2
0
0.0 2
0.0 4
0.0 6
Vin , Vout (V)
Vin
Vout
Gain = +2, RL = 150 Ω
, Vin = 400 mVpk
Measurement configuration: crosstalk = 20 log (V0/V1)
1E+4 1E+5 1E+6 1E+7
Frequency (Hz)
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
Xtalk (dB)
3/1output
4/1output
2/1output
4/1 output
3/1 output
2/1 output
Gain = +11, ZL = 150 Ω
//27 pF
0.1 1 10 100 1000
5
10
15
20
25
30
en (nV/ Hz)
_
+
Frequency (kHz)
Gain = +100, no load
0.0E+0 5.0E- 2 1. 0E - 1 1.5 E - 1 2 .0E - 1
Time (ms)
-3
-2
-1
0
1
2
3
Vin,V
out (V)
Vout
Vin
Gain = +11, RL = 150 Ω
Figure 14. Standby mode - T n, T Figure 15. Third order intermodulation (Vcc NETHORK Cur HEREF BIREF H.965 11,22" (7 a; 1: sec GROUP DELHY EV ems snaraaa Hz 4.56817 68 5:31595n sen: DIV DIV 1 .285 LEBBn IE BBB‘BBB Hz 22) 2‘82! IZE‘LBBZ Hz RBN: 308 Hz ST¢4E.B sec RQNGEIR‘ 13,T= lfidBm
DocID009413 Rev 9 15/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
Figure 16. Group delay (VCC = ±2.5 V)
Figure 14. Standby mode - Ton, Toff
(VCC = ±2.5 V)
Figure 15. Third order intermodulation
(VCC = ±2.5 V)(1)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same
amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The
generator and the spectrum analyzer are phase locked for better accuracy.
0 2E-64E-66E-68E-61E-5
time (s)
-3
-2
-1
0
1
2
3
Vin, Vout (V)
Vout
T
onToff
Standby
Open loop
0123 4
Vout pe ak (V)
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IM3 (dBc)
740kHz
380kHz640kHz
80kHz
80 kHz
740 kHz
380 kHz 640 kHz
Gain = +2, ZL = 150 Ω
//27 pF, Tamb = 25 °C
Gain = +2, ZL = 150 Ω
//27 pF, Tamb = 25 °C
Figure 17. Closed loop gain and phase vs. Figure 18. Overshoot vs. output capacitance Figure 19. Closed loop gain and phase vs. Figure 20. Closed loop gain and phase vs. Figure 21. Large signal measurement - positive Figure 22. Large signal measurement - negative
Electrical characteristics TSH80, TSH81, TSH82, TSH84
16/30 DocID009413 Rev 9
Figure 17. Closed loop gain and phase vs.
frequency (gain = +2, VCC = ±5 V)
Figure 18. Overshoot vs. output capacitance
(VCC = ±5 V)
Figure 19. Closed loop gain and phase vs.
frequency (gain = -10, VCC = ±5 V)
Figure 20. Closed loop gain and phase vs.
frequency (gain = +11, VCC = ±5 V)
Figure 21. Large signal measurement - positive
slew rate (VCC = ±5 V)
Figure 22. Large signal measurement - negative
slew rate (VCC = ±5 V)
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-20
-15
-10
-5
0
5
10
Gain (dB)
-200
-100
0
100
200
Phase (°)
Gain
Phase
RL = 150 Ω
, Tamb = 25 °C
Gain = +2, Tamb = 25 °C
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-30
-20
-10
0
10
20
Gain (dB)
150Ω
150Ω//10pF
150Ω//33pF
150Ω//22pF
150 W // 33 pF
150 Ω
150 Ω // 22 pF
150 Ω // 10 pF
1E+4 1E+5 1 E+6 1E+7 1 E+8 1E+9
Frequency (Hz)
-10
0
10
20
30
Gain (dB)
-50
0
50
100
150
200
Phase (°)
Gain
Phase
Phase
Gain
RL = 150 Ω
, Tamb = 25 °C
1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
-10
0
10
20
30
Gain (dB)
-150
-100
-50
0
Phase (°)
Gain
Phase
RL = 150 Ω
, Tamb = 25 °C
020406080100
Time (ns)
-5
-4
-3
-2
-1
0
1
2
3
4
5
Vout (V)
Gain = +2, ZL = 150 Ω
//5.6 pF, Vin = 400 mVpk
020406080100
Time (ns)
-5
-4
-3
-2
-1
0
1
2
3
4
5
Vout
(V)
Gain = +2, ZL = 150 Ω
//5.6 pF, Vin = 400 mVpk
Figure 23. Small signal measurement - rise time Figure 24. Small signal measurement -lall lime Figure 25. Channel separation (crosstalk) vs. VlN V1 1 m 150 :2 me n V0 l m man 150 n AMuaosa Figure 26. Channel separation (crosstalk) vs. Figure 27. Equivalent input noise vollage Figure 28. Maximum output swing £2
DocID009413 Rev 9 17/30
TSH80, TSH81, TSH82, TSH84 Electrical characteristics
Figure 23. Small signal measurement - rise time
(VCC = ±5 V)
Figure 24. Small signal measurement - fall time
(VCC = ±5 V)
Figure 25. Channel separation (crosstalk) vs.
frequency schematic (VCC = ±5 V)
Figure 26. Channel separation (crosstalk) vs.
frequency (VCC = ±5 V)
Figure 27. Equivalent input noise voltage
(VCC = ±5 V)
Figure 28. Maximum output swing
(VCC = ±5 V)
0102030405060
Ti m e (ns)
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
Vin, Vout (V)
Vin
Vout
Gain = +2, RL = 150 Ω
, Vin = 400 mVpk
0 102030405060
Time (ns)
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
V
in, Vou t (V)
Vin
Vout
Gain = +2, RL = 150 Ω
, Vin = 400 mVpk
Measurement configuration: crosstalk = 20 log (V0/V1)
1E+4 1E+5 1E+6 1E+7
Frequency (Hz)
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
Xtalk (dB)
3/1output
4/1output
2/1output
4/1 output
3/1 output
2/1 output
Gain = +11, ZL = 150 Ω
//27 pF
0.1 1 10 100 1 000
5
10
15
20
25
30
en (nV / Hz)
_
+
Frequency (kHz)
Gain = +100, no load
0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1
Time (m s )
-5
-4
-3
-2
-1
0
1
2
3
4
5
Vin, V
out (V)
Vout
Vin
Gain = +11, RL = 150 Ω
Figure 29. Standby mode - T n, T Figure 30. Third order intermodulation NETWORK Car 3: er 34:5; 6.668 11 .Efln GROUP DELRY 12V 13 BZZ'ZZSBHZ o MK}? “(IR 4 .94646 1122 £11?er DIV 1 .BEZn REM: 3Z2 H: DIV 1.832 18 582.666 Hz EB BEE BEE.BBE Hz STRRT STOP ST'Mlg as: RRNGE'P- 103.1" 12d?"-
Electrical characteristics TSH80, TSH81, TSH82, TSH84
18/30 DocID009413 Rev 9
Figure 31. Group delay (VCC = ±5 V)
Figure 29. Standby mode - Ton, Toff
(VCC = ±5 V)
Figure 30. Third order intermodulation
(VCC = ±5 V)(1)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same
amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The
generator and the spectrum analyzer are phase locked for better accuracy.
02E-64E-66E-68E-6
time(s)
-5
0
5
Vin, Vout (V)
Vout
T
on Toff
Standby
Open loop
01234
Vout peak(V)
-10 0
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IM3 (dBc)
80kHz
380kHz
640kHz
740kHz
80 kHz
740 kHz
380 kHz
640 kHz
Gain = +2, ZL = 150 Ω
//27 pF, Tamb = 25 °C
Gain = +2, ZL = 150 Ω
//27 pF, Tamb = 25 °C
E] a/e PRL n m may“? DI" Gem Step4 Walerence CCIRBSU Ulndaw 4 Hindu w 2 Hindu w 3
DocID009413 Rev 9 19/30
TSH80, TSH81, TSH82, TSH84 Test conditions
4 Test conditions
4.1 Layout precautions
To make the best use of the TSH8x circuits at high frequencies, some precautions have to
be taken with regard to the power supplies.
In high-speed circuit applications, the implementation of a proper ground plane on both
sides of the PCB is mandatory to ensure low inductance and low resistance common
return.
Power supply bypass capacitors (4.7 µF and ceramic 100 pF) should be placed as
close as possible to the IC pins in order to improve high frequency bypassing and
reduce harmonic distortion. The power supply capacitors must be incorporated for both
the negative and positive pins.
All inputs and outputs must be properly terminated with output resistors. Thus, the
amplifier load is resistive only and the stability of the amplifier is improved.
All leads must be wide and must be as short as possible, especially for op-amp inputs
and outputs, in order to decrease parasitic capacitance and inductance.
Time constants result from parasitic capacitance. To reduce time constants in lower-
gain applications, use a low feedback resistance (under 1 kΩ).
Choose the smallest component size possible (SMD).
On the output, the load capacitance must be negligible to maintain good stability. Place
ca serial resistance as close as possible to the output pin to minimize the effect of the
load capacitance.
Figure 32. CCIR330 video line
D 00 MD DU 99 95 Lum Nnnlin CC‘RSSD Lme 103 DI” Galn CC‘R33D III 7E$lbar [I 35% D 00% peak [Mk III 3533 Di" Phas: CC‘RSSD Lme 103 nus neak D 27 deg new peak -IJ 10 deg Weak Feak U 38 den
Test conditions TSH80, TSH81, TSH82, TSH84
20/30 DocID009413 Rev 9
4.2 Video capabilities
To characterize the differential phase and differential gain, a CCIR330 video line is used.
The video line contains of five (flat) levels of luminance onto which the chrominance signal
is superimposed. The luminance gives various amplitudes which define the saturation of the
signal. The chrominance gives various phases which define the color of the signal.
Differential phase (or differential gain) distortion is present if a signal chrominance phase
(gain) is affected by the luminance level. The differential phase and gain represent the
ability to uniformly process the high frequency information at all luminance levels.
When a differential gain is present, color saturation is not correctly reproduced.
The input generator is the Rohde & Schwarz CCVS. The output measurement is made by
the Rohde and Schwarz VSA.
Figure 33. Measurement on Rohde and Schwarz VSA
E]
DocID009413 Rev 9 21/30
TSH80, TSH81, TSH82, TSH84 Test conditions
Table 7. Video results
Parameter Value (VCC = ±2.5 V) Value (VCC = ±5 V) Unit
Lum NL 0.1 0.3
%
Lum NL Step1 100 100
Lum NL Step2 100 99.9
Lum NL Step3 99.9 99.8
Lum NL Step4 99.9 99.9
Lum NL Step5 99.9 99.7
Diff Gain pos 0 0
Diff Gain neg -0.7 -0.6
Diff Gain pp 0.7 0.6
Diff Gain Step1 -0.5 -0.3
Diff Gain Step2 -0.7 -0.6
Diff Gain Step3 -0.3 -0.5
Diff Gain Step4 -0.1 -0.3
Diff Gain Step5 -0.4 -0.5
Diff Phase pos 0 0.1
Degree
Diff Phase neg -0.2 -0.4
Diff Phase pp 0.2 0.5
Diff Phase Step1 -0.2 -0.4
Diff Phase Step2 -0.1 -0.4
Diff Phase Step3 -0.1 -0.3
Diff Phase Step4 0 0.1
Diff Phase Step5 -0.2 -0.1
Precautions on asymmetrical supply operation TSH80, TSH81, TSH82, TSH84
22/30 DocID009413 Rev 9
5 Precautions on asymmetrical supply operation
The TSH8x device can be used with either a dual or a single supply. If a single supply is
used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be
carefully designed so as to reject any noise present on the supply rail.
As the bias current is 15 µA, use a high resistance R1 (approximately 10 kΩ) to avoid
introducing an offset mismatch at the amplifier’s inputs.
Figure 34. Asymmetrical supply schematic diagram
C1, C2, C3 are bypass capacitors intended to filter perturbations from VCC. The following
capacitor values are appropriate:
C1 = 100 nF and C2 = C3 = 100 µF
R2 and R3 are such that the current running through them must be superior to 100 times the
bias current. Therefore, use the following resistance values:
R2 = R3 = 4.7 kΩ
Cin and Cout are chosen to filter the DC signal by the low-pass filters (R1, Cin) and
(Rout, Cout). With R1 = 10 kΩ, Rout = RL = 150 Ω, and Cin = 2 µF, Cout = 220 µF the cutoff
frequency obtained is lower than 10 Hz.
Figure 35. Use of the TSH8x in a gain = -1 configuration
IN
R1
OUT
R2
R3 C1
C3
+
-
R4
C2
R5
Cf
RL
Cin
Cout
AM00845
Vcc+
IN
R1
OUT
R2
R3 C1
C3
+
-
C2
AM00846
E]
DocID009413 Rev 9 23/30
TSH80, TSH81, TSH82, TSH84 Package information
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
I L m L L} LN i
Package information TSH80, TSH81, TSH82, TSH84
24/30 DocID009413 Rev 9
6.1 SOT23-5 package information
Figure 36. SOT23-5 package outline
Table 8. SOT23-5 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 0.90 1.20 1.45 0.035 0.047 0.057
A1 0.15 0.006
A2 0.90 1.05 1.30 0.035 0.041 0.051
B 0.35 0.40 0.50 0.013 0.015 0.019
C 0.09 0.15 0.20 0.003 0.006 0.008
D 2.80 2.90 3.00 0.110 0.114 0.118
D1 1.90 0.075
e 0.95 0.037
E 2.60 2.80 3.00 0.102 0.110 0.118
F 1.50 1.60 1.75 0.059 0.063 0.069
L 0.10 0.35 0.60 0.004 0.013 0.023
K 0° 10°
E] swwc m L W U k
DocID009413 Rev 9 25/30
TSH80, TSH81, TSH82, TSH84 Package information
6.2 SO8 package information
Figure 37. SO8 package outline
Table 9. SO8 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k1° 8°1° 8°
ccc 0.10 0.004
62
El E PW 1 mmwmoN H H ‘ e M xi SEAT‘NC mg GAGE mm % fl 3 L /
Package information TSH80, TSH81, TSH82, TSH84
26/30 DocID009413 Rev 9
6.3 TSSOP8 package information
Figure 38. TSSOP8 package outline
Table 10. TSSOP8 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
76623
E] D E x \ WA L—o—J W’fi 1 i EjJ *2 A1 C Dm- H l PLANE 0 25 mm ‘ GAGE PLANE , 77777777777 , E m 1 D7 x \ \ _ Hawaii L ‘7“ aUVE L1 HHHWHHi' \ \
DocID009413 Rev 9 27/30
TSH80, TSH81, TSH82, TSH84 Package information
6.4 TSSOP14 package information
Figure 39. TSSOP14 package outline
Table 11. TSSOP14 package mechanical data
Symbol
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.90 5.00 5.10 0.193 0.197 0.201
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.176
e 0.65 0.0256
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
k0° 8°0° 8°
aaa 0.10 0.004
76623
Ordering information TSH80, TSH81, TSH82, TSH84
28/30 DocID009413 Rev 9
7 Ordering information
Table 12. Order codes
Type Temperature
range Package Packaging Marking
TSH80ILT
-40 to +85 °C
SOT23-5
Tape and reel
K303
TSH80IYLT(1)
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 and Q002 or equivalent.
SOT23-5
(automotive grade level) K310
TSH80IYDT(1) SO8
(automotive grade level) SH80IY
TSH81IPT TSSOP8 SH81I
TSH82IDT SO8 Tape and reel TSH82I
TSH82IYDT(1) SO8
(automotive grade level)
Tape and reel
TSH82IY
TSH82IPT TSSOP8 SH82I
TSH84IPT TSSOP14 SH84I
E]
DocID009413 Rev 9 29/30
TSH80, TSH81, TSH82, TSH84 Revision history
8 Revision history
Table 13. Document revision history
Date Revision Changes
1-Feb-2003 1 First release.
2-Aug-2005 2 PPAP references inserted in the datasheet, see Table 12: Order
codes on page 28.
12-Apr-2007 3 Corrected temperature range for TSH80IYD/IYDT and
TSH82IYD/IYDT order codes in Table 12: Order codes on page 28.
24-Oct-2007 4 TSH81IYPT PPAP references inserted in the datasheet, see
Table 12: Order codes on page 28.
19-May-2009 5
Added data relating to the quad TSH84 device.
Removed TSH81IYPT, TSH81IYD-IYDT, TSH82IYPT and
TSH82IYD-IYDT order codes in Table 12: Order codes.
24-Jul-2012 6
Added TSSOP14 package to figure on page 1, updated titles of
Figure 2 to Figure 31, updated Section 6: Package information,
removed TSH80ID-IDT, TSH80IYD, TSH81ID-IDT and TSH82ID
order codes from Table 12: Order codes. Modified note 1 below
Table 12: Order codes, minor corrections throughout document.
13-Sep-2012 7
Updated TSH80IYLT order code (status qualified) in Table 12.
Removed TSH80IYD, TSH80IYDT, TSH80ID/DT, TSH81ID/DT, and
TSH82ID order code from Table 12.
Replaced TSH82DT by TSH82IDT order code in Table 12.
Minor corrections throughout document.
30-Apr-2013 8
Updated Features: added automotive qualification
Figure 1: Pin connections for each package (top view): updated pin
connections of SO8/TSSOP8 packages for TSH81 device.
Replaced Figure 36: SOT23-5 package outline
Table 12: Order codes: added automotive order code TSH82IYDT
03-Jul-2014 9
Updated CDM to 1.5 kV in Table 1: Absolute maximum ratings
Table 12: Order codes: added automotive order code TSH80IYDT
and removed shipping option in tubes from TSH82IDT
TSH80, TSH81, TSH82, TSH84
30/30 DocID009413 Rev 9
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com